LEGEND	
SHEET 1	LEGEND
SHEET 2	ELEVATIUN RSS4003
SHEET 3	FIUNDATIUN RSS4003
SHEET 4	LAYロUT EXAMPLE
SHEET 5	CINDUIT LAYロUT
SHEET 6	WIRE AND CINDUIT LEGEND
SHEET 7	CINTRIL PANEL FIUNDATIUN

RSS-4003 Vehicle Barrier Installation:

1. Excavate $6^{\prime} 1^{\prime \prime} \times 12^{\prime} 41 / 2^{\prime \prime} \times 5$ ' $1 / 2^{\prime \prime \prime}$ pit
2. Compact Soil to 95% or per local specs
3. Position barrier in excavation
4. Connect Natural Drains (if applicable)
5. Connect Conduit Connections
(Electric, Controls, \& Sump
(Electric, Controls, \& Sump Pump)
6. \# 5 REBAR IS ATTACHED TO THE BARRIER WHEN SHIPPED
7. Pour approx. 8.5 yards concrete
(3000 PSI minimum)
8. Set vehicle barrier $1 / 2^{\prime \prime}$ above existing roadway
then taper concrete for smooth transition.
9. BARRIER WEIGHT 10,000 \#, WITH HEAT $10,300 \#$

$\ \ \mid$	E	$\bigcirc \bigcirc$	\cdots	$\square \circlearrowleft$	\forall
CDNDUIT SCHEDULE					
CDNDUIT ID	FRDM	T口	CDNDUIT SIZE	WIRE SPECS	PURPGSE
C-0	MAIN PDWER SUURCE	BATTERY BACKUP PANEL	BY INSTALLER	BY INSTALLER L1,L2,N \& GRD	MAIN PICWER
C-1	BATTERY BACKUP PANEL	\qquad	$1^{\prime \prime}$	$\begin{array}{cc} \hline 4-\# 10 & \text { THHN } \\ 1-\# 10 & \text { GND } \\ \hline \end{array}$	SYSTEM PIWER
C-2	$\begin{gathered} \text { BATTERY } \\ \text { BACKUP PANEL } \end{gathered}$	$\begin{gathered} \text { BARRIER } \\ \text { CZNTRIL PANEL } \\ \hline \end{gathered}$	$1^{\prime \prime}$	$\begin{gathered} 3-\# 16 \text { THHN } \\ (24 \mathrm{VDC}) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { BATTERY } \\ \text { BACKUP STATUS } \\ \hline \end{array}$
C-3	BARRIER CINTRZL PANEL	BARRIER PIWER $J-B \square X$	$1^{\prime \prime}$	$\begin{gathered} 2-\# 10 \text { THHN } \\ 1-\# 10 \text { GND } \\ 2-\# 12 \text { THHN } \\ \hline \end{gathered}$	SERVD DRIVE PDWER SUMP PUMP
C-4	BARRIER CONTRIL PANEL	BARRIER CLNTRDL J-BCX	$1^{\prime \prime}$	$\begin{gathered} \text { 1-CAT5e CABLE } \\ 2-\# 16 \text { THHN } \end{gathered}$	CDMMUNICATIUNS WARNING LED'S
C-5	\qquad	SAFETY LIDPS	$1^{\prime \prime}$	$\begin{gathered} \text { \#16 XPLE } \\ \text { LIDP WIRE } \\ \hline \end{gathered}$	SAFETY LDIPS
C-6	$\begin{gathered} \text { BARRIER } \\ \text { CDNTRDL PANEL } \end{gathered}$	TRAFFIC ARM	$1^{\prime \prime}$	4-\#16 THHN	CDNTRDLS
C-7	BARRIER CINTRUL PANEL	TRAFFIC ARM	$1^{\prime \prime}$	$\begin{gathered} \text { 2-\#14 THHN } \\ 1-\# 14 \text { GND } \end{gathered}$	PDWER
C-8	BARRIER CDNTRLL PANEL	TUUCHSCREEN CINTRDL	$1^{\prime \prime}$	$\begin{gathered} \text { 1-CAT5e CABLE } \\ 2-\# 16 \text { THHN } \end{gathered}$	$\begin{aligned} & \text { TQUCHSCREEN } \\ & \text { DPERATDR } \\ & \text { CDNTRQL } \end{aligned}$

ALL FIELD WIRING TO BE THHN STRANDED CONDUCTORS. ALL CAT5E CABLE IN CONDUIT TO BE TYPE CMXF.

> NOTE: IT IS THE RESPONSIBILITY OF THE INSTALLING CONTRACTOR TO ENGINEER ALL WIRING ON SITE TO MEET THE GOVERNING WIRE SIZE, POWER REQUIREMENTS AND LOCAL ELECTRICAL CODES. THIS CHART IS BASED ON A MAXIMUM DISTANCE OF 100^{\prime} FROM THE BCP TO THE BARRIER.

FOUNDATION SUITABLE FOR TRAFFIC LIGHTS OR GATE ARMS.

